
CSCI-564
Constraint Processing and

Heuristic Search
Lecture 7 – Automatically Created Heuristics

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Where do heuristics come from?
• Heuristics are a relaxations of constraints of the problem.
• Solves the relaxed problem exactly.

• Example:
• Straight-line distance estimate for shortest-path.

Automatically Created Heuristics

wall

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Heuristics are relaxations of constraints.
• It’s not a directly implementable concept.

• Therefore, we will speak about abstraction transformation.
• Make automated generation of heuristics possible.

• It’s different from hand-craft, domain-dependent solutions.

Automatically Created Heuristics

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• The original problem is referred as the concrete problem (or concrete state space).

• The abstraction simplifies the concrete problem.

• The distances/cost in the simplified version are used as heuristic estimates.

Abstraction transformation

g

h

g

h

Simplified
version

Concrete
problem

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Note: Combining several heuristics based on different abstractions leads to
better estimates.
• You can create a hierarchy of abstractions.

• The main purpose of abstraction is to reduce the state space.
• State spaces can be very large, even infinite (continuous state space).
• You want to reduce the search effort.

• The abstract state space is often smaller.
If the abstract problem has no solution, neither has the concrete one.

Abstraction transformation

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Abstractions can create spurious solution.
• A solution that only works for the subtract problem.

Abstraction transformation

Simplified
version

Concrete
problem

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Abstractions can create spurious solution.
• A solution that only works for the subtract problem.

• How to avoid it?
• Designing of an abstract-and-refine algorithm

• Refine the abstract solution to make consistent with the concrete problem
• Creating a database that stores the distances/costs from abstract states to abstract goal

states.
• Using the database to guide the search, but not using it as a solution.

Abstraction transformation

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• AI Researchers try to use abstraction transformation to create admissible heuristics
automatically.

• Definition (Abstraction transformation):
• An abstraction transformation 𝜙: 𝑆 → 𝑆′ maps state 𝑢 in the concrete problem space to abstract states
𝜙(𝑢) and concrete actions 𝑎 to abstract actions 𝜙(𝑎).

Abstraction transformation

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Definition (Abstraction transformation):
• An abstraction transformation 𝜙: 𝑆 → 𝑆′ maps state 𝑢 in the concrete problem space to abstract states
𝜙(𝑢) and concrete actions 𝑎 to abstract actions 𝜙(𝑎).

• The distance in the abstract state space is an admissible heuristics:
• If the distance between all states 𝑢, 𝑣 ∈ 𝑆 is greater or equal to the distance between all states 𝜙(𝑢)

and 𝜙(𝑣).

Abstraction transformation

Concrete
problem

Simplified
version

𝑢

𝑣

𝜙(𝑢)

𝜙(𝑣)

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Two ways to calculate the heuristics:
• On demand (on the fly) like hierarchical A*.
• Precompute and store the goal distances (pattern databases).

• It comes back to the origin of heuristics.
• Heuristics are a relaxations of constraints of the problem.
• Solves the relaxed problem exactly.

Abstraction transformation

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• How can we relax the constraints of a problem?
• Adding new edges
• Merging nodes
• Or both

• Example

Relaxing constraints

s

t

s

t

Add edges

And removing edges?

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• There are two types of abstraction transformations:
• Embedding transformation
• Homomorphism transformation

• Definition (Embedding and Homomorphism):
• An abstraction transformation 𝜙 is an embedding transformation if it adds edges to 𝑆 such

that the concrete and abstract state sets are the same; that is, 𝜙 𝑢 = 𝑢 for all 𝑢 ∈ 𝑆.
Homomorphism requires that for all edges 𝑢, 𝑣 ∈ 𝑆, there must also be an edge
𝜙 𝑢 , 𝜙 𝑣 ∈ 𝑆′.

Abstractions

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Definition (Embedding and Homomorphism):
• An abstraction transformation 𝜙 is an embedding transformation if it adds edges to 𝑆 such

that the concrete and abstract state sets are the same; that is, 𝜙 𝑢 = 𝑢 for all 𝑢 ∈ 𝑆.
Homomorphism requires that for all edges 𝑢, 𝑣 ∈ 𝑆, there must also be an edge
𝜙 𝑢 , 𝜙 𝑣 ∈ 𝑆′.

• Embedding transformation is a special case of homomorphism.

Abstractions

𝑢

𝑣

𝜙(𝑢)

𝜙(𝑣)

𝜙

𝜙

Homomorphism

How can homomorphism
hold when you reduce the

state space?

𝑆

𝑆′

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

Abstractions

𝑢

𝑣

𝜙(𝑢)

𝜙(𝑣)

𝜙

𝜙

Homomorphism

How can homomorphism
hold when you reduce the

state space?

𝑆

𝑆′

𝑢

𝑣

𝜙(𝑢)

𝜙(𝑣)

𝜙

𝜙𝑆

𝑆′

𝑚
𝑛 𝜙

𝜙

Several state in 𝑆 can be map to
the same abstract state in 𝑆’

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• We made our abstraction transformation.

• We want to use the abstract state space as a heuristic.

• Is the heuristic admissible and consistent?

It depends!

Abstractions

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Definition (Admissibility and Consistency of Abstraction Heuristics):
• Let 𝑆 be a state space and 𝑆! = 𝜙(𝑆) be any homomorphic abstraction transformation of 𝑆.
• Let heuristic function ℎ"(𝑢) for state 𝑢 and goal 𝑡 be defined as the length of the shortest

path from 𝜙(𝑢) to 𝜙(𝑡) in 𝑆!.
• Then ℎ" is an admissible, consistent heuristic function.

Abstraction

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Proof:
• If 𝑝 = (𝑢 = 𝑢#, … , 𝑢$ = 𝑡) the shortest path in 𝑆.
• A solution in 𝑆’, 𝑢# , … , 𝜙(𝑡), cannot be shorter than the optimal solution in 𝑆’.
• Recall than a heuristic ℎ is consistent if ℎ 𝑢 ≤ 𝛿 𝑢, 𝑣 + ℎ(𝑣).
• Because 𝛿"(𝑢, 𝑡) is the length of the shortest path between 𝜙(𝑢) and 𝜙(𝑡).
• Then, 𝛿" 𝑢, 𝑡 ≤ 𝛿" 𝑢, 𝑣 + 𝛿"(𝑣, 𝑡) for all 𝑢 and 𝑣.
• Substituting ℎ", ℎ" 𝑢 ≤ 𝛿" 𝑢, 𝑣 + ℎ"(𝑣′).
• Because 𝜙 is an abstraction, 𝛿" 𝑢, 𝑣 ≤ 𝛿(𝑢, 𝑣), therefore, ℎ" 𝑢 ≤ 𝛿 𝑢, 𝑣 + ℎ"(𝑣)∎

Abstraction

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• STAR abstractions:
• Groups states by neighborhood.
• Starting with a state 𝑢 with the maximum number of neighbors, an abstract state is

constructed of which the range consists of all the states reachable from 𝑢 within a fixed
number of edges.

• Domain abstractions:
• A domain abstraction is a mapping of labels 𝜙: 𝐿 → 𝐿′
• The abstract space consist of all states reachable from 𝜙(𝑠) by applying sequences of

abstract actions.

Other types of abstraction transformation

U N I V E R S I T Y A S I T ’ S M E A N T T O B E

• Find an abstraction for the following problem.
• Draw the abstract state space graph
• Show that it is a homomorphism abstraction transformation

Exercise

