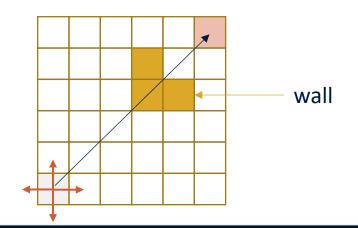
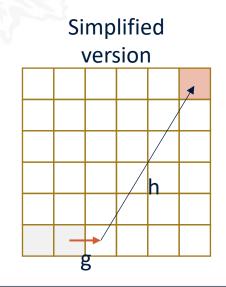
ST. FRANCIS XAVIER UNIVERSITY Constraint Processing and Heuristic Search

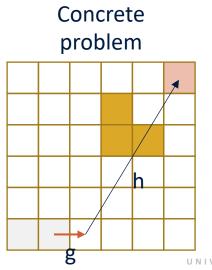

MQUESI

Lecture 7 – Automatically Created Heuristics

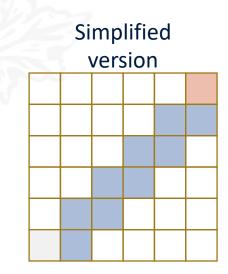
Automatically Created Heuristics

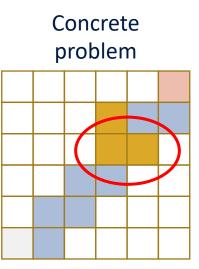
- Where do heuristics come from?
 - Heuristics are a relaxations of constraints of the problem.
 - Solves the relaxed problem exactly.
- Example:
 - Straight-line distance estimate for shortest-path.


Automatically Created Heuristics


- Heuristics are relaxations of constraints.
 - It's not a directly implementable concept.
- Therefore, we will speak about abstraction transformation.
 - Make automated generation of heuristics possible.
- It's different from hand-craft, domain-dependent solutions.

- The original problem is referred as the concrete problem (or concrete state space).
- The abstraction simplifies the concrete problem.
- The distances/cost in the simplified version are used as heuristic estimates.


- Note: Combining several heuristics based on different abstractions leads to better estimates.
 - You can create a hierarchy of abstractions.
- The main purpose of abstraction is to reduce the state space.
 - State spaces can be very large, even infinite (continuous state space).
 - You want to reduce the search effort.
- The abstract state space is often smaller.

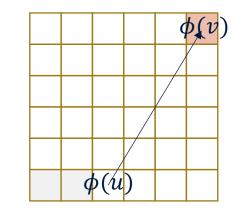

If the abstract problem has no solution, neither has the concrete one.

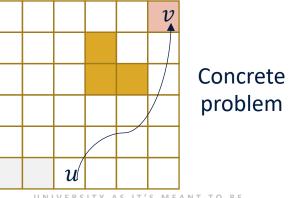
- Abstractions can create spurious solution.
 - A solution that only works for the subtract problem.

FTFX STFX

Abstraction transformation

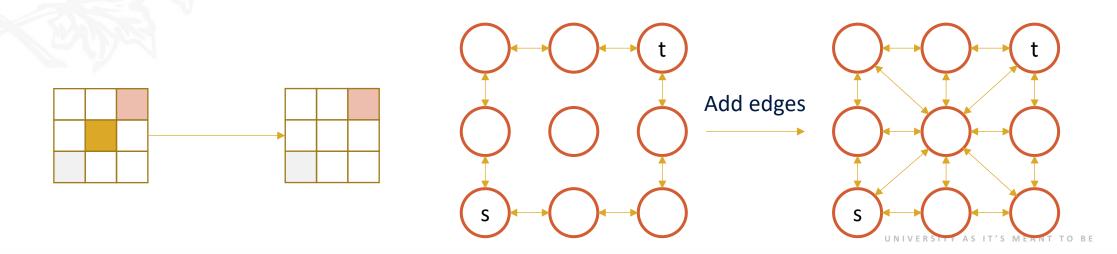
- Abstractions can create spurious solution.
 - A solution that only works for the subtract problem.
- How to avoid it?
 - Designing of an abstract-and-refine algorithm
 - Refine the abstract solution to make consistent with the concrete problem
 - Creating a database that stores the distances/costs from abstract states to abstract goal states.
 - Using the database to guide the search, but not using it as a solution.


StfX


- Al Researchers try to use abstraction transformation to create admissible heuristics automatically.
- Definition (Abstraction transformation):
 - An abstraction transformation φ: S → S' maps state u in the concrete problem space to abstract states φ(u) and concrete actions a to abstract actions φ(a).

- Definition (Abstraction transformation):
 - An abstraction transformation φ: S → S' maps state u in the concrete problem space to abstract states φ(u) and concrete actions a to abstract actions φ(a).
- The distance in the abstract state space is an admissible heuristics:
 - If the distance between all states u, v ∈ S is greater or equal to the distance between all states φ(u) and φ(v).

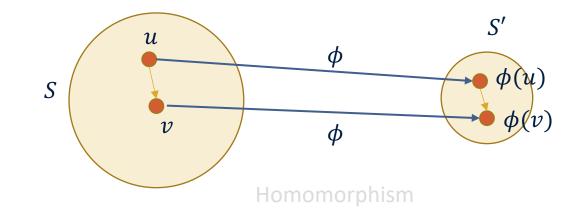
Simplified version


- Two ways to calculate the heuristics:
 - On demand (on the fly) like hierarchical A*.
 - Precompute and store the goal distances (pattern databases).
- It comes back to the origin of heuristics.
 - Heuristics are a relaxations of constraints of the problem.
 - Solves the relaxed problem exactly.

Relaxing constraints

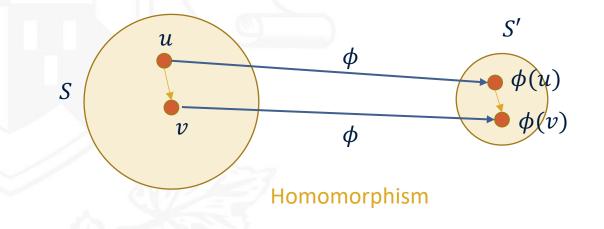
- How can we relax the constraints of a problem?
 - Adding new edges
 - Merging nodes
 - Or both

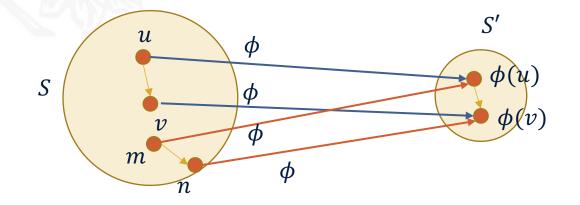
And removing edges?


• Example

- There are two types of abstraction transformations:
 - Embedding transformation
 - Homomorphism transformation
- Definition (Embedding and Homomorphism):
 - An abstraction transformation ϕ is an embedding transformation if it adds edges to S such that the concrete and abstract state sets are the same; that is, $\phi(u) = u$ for all $u \in S$. Homomorphism requires that for all edges $(u, v) \in S$, there must also be an edge $(\phi(u), \phi(v)) \in S'$.

StfX


- Definition (Embedding and Homomorphism):
 - An abstraction transformation φ is an embedding transformation if it adds edges to S such that the concrete and abstract state sets are the same; that is, φ(u) = u for all u ∈ S. Homomorphism requires that for all edges (u, v) ∈ S, there must also be an edge (φ(u), φ(v)) ∈ S'.
- Embedding transformation is a special case of homomorphism.


How can homomorphism hold when you reduce the state space?

How can homomorphism hold when you reduce the state space?

Several state in *S* can be map to the same abstract state in *S*'

StFX

- We made our abstraction transformation.
- We want to use the abstract state space as a heuristic.
- Is the heuristic admissible and consistent?

It depends!

STFX

Abstraction

- Definition (Admissibility and Consistency of Abstraction Heuristics):
 - Let S be a state space and $S' = \phi(S)$ be any homomorphic abstraction transformation of S.
 - Let heuristic function $h_{\phi}(u)$ for state u and goal t be defined as the length of the shortest path from $\phi(u)$ to $\phi(t)$ in S'.
 - Then h_{ϕ} is an admissible, consistent heuristic function.

• Proof:

- If $p = (u = u_1, ..., u_k = t)$ the shortest path in S.
- A solution in S', (u_1) , ..., $\phi(t)$, cannot be shorter than the optimal solution in S'.
- Recall than a heuristic h is consistent if $h(u) \leq \delta(u, v) + h(v)$.
- Because $\delta_{\phi}(u, t)$ is the length of the shortest path between $\phi(u)$ and $\phi(t)$.
- Then, $\delta_{\phi}(u, t) \leq \delta_{\phi}(u, v) + \delta_{\phi}(v, t)$ for all u and v.
- Substituting h_{ϕ} , $h_{\phi}(u) \leq \delta_{\phi}(u, v) + h_{\phi}(v')$.
- Because ϕ is an abstraction, $\delta_{\phi}(u, v) \leq \delta(u, v)$, therefore, $h_{\phi}(u) \leq \delta(u, v) + h_{\phi}(v) \blacksquare$

Other types of abstraction transformation


• **STAR** abstractions:

- Groups states by neighborhood.
- Starting with a state *u* with the maximum number of neighbors, an abstract state is constructed of which the range consists of all the states reachable from *u* within a fixed number of edges.
- **Domain** abstractions:
 - A domain abstraction is a mapping of labels $\phi: L \rightarrow L'$
 - The abstract space consist of all states reachable from φ(s) by applying sequences of abstract actions.

Exercise

- Find an abstraction for the following problem.
 - Draw the abstract state space graph
 - Show that it is a homomorphism abstraction transformation

